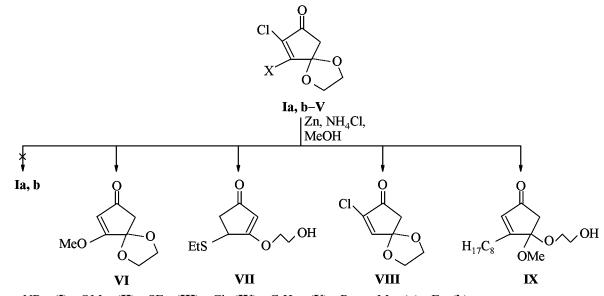
Prostanoids: LXXVI.^{*} Synthesis and Specific Features of Reductive Dechlorination with the System Zn–NH₄Cl–MeOH of Some 3-N-, O-, S-, Cl-, and Alkyl-substituted 2-Chloro-4,4-ethylenedioxycyclopent-2-en-1-ones^{**} Ozonolysis of 3-Caren-5-one

R.R. Akhmetvaleev, G.M. Baibulatova, G.A. Shavaleeva, and M.S. Miftakhov


Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Bashkortostan, 450054 Russia

Received August 12, 1999

Abstract—Reaction of a number of 3-N-, O-, S-, Cl-, and alkyl-substituted 2-chloro-4,4-ethylenedioxycyclopent-2-en-1-ones with Zn in NH₄Cl-MeOH medium were investigated. The expected or partially transformed dehydrochlorination products were isolated. An exclusive chemical stability of 3N-containing cyclopentenones was disclosed. This phenomenon was understood as originating from stabilizing n-d-pinteraction of electrons belonging to heteroatoms in the planar $C^{1}(O)-C^{2}(Cl)-C^{3}(N)$ fragment contained in the molecules of the compounds.

Investigating the reaction of related compounds, N,N-dialkylamides I [2], ether II [3], thioether III, chloride IV [4], and ketone V [5], with a mild reducing system Zn-NH₄Cl-MeOH we established that notwithstanding the similarity of their chemical nature compounds I–V in this reaction behaved quite

different. The enaminochloroketones Ia, b did not suffer any changes even at long heating in the system Zn-NH₄Cl-MeOH (60° C, 10 h) whereas ether II and thioether III under similar conditions rapidly (1 h) and cleanly were converted into new cyclopentenones VI and VII respectively.

 $X = NR_2$ (I), OMe (II), SEt (III), Cl (IV), C_8H_{17} (V); R = Me (a), Et (b).

^{*}Communication LXXV see [1].

^{**} The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 99-03-32916a).

Dichlorcyclopentenone **IV** is highly reactive and under common conditions quickly affords a mixture of several compounds. Under careful control (1 equiv of Zn, 20°C, TLC) in more than 60% yield at incomplete conversion of the initial compound we succeeded in isolation of monodechlorination product **VIII**. The reductive dechlorination of 3-alkyl-substituted cyclopentenone **V** as also of compound **IV** is better performed at 20°C. Here alongside C²-dechlorination occurs simultaneous opening of the dioxolane cycle to yield an mixed ketal **IX**.

The above examples may be regarded as a certain chemical correlation of the degree of "inertness" of a fragment in vicinal hetero-substituted α,β -unsaturated ketones **I**-V based on the difference in participation of the secondary orbital interactions n, d, p-electrons of the heteroatoms in the planar fragment $C^{I}(O)-C^{2}(Cl)-C^{3}(X)$ of a cyclopentenone (X-ray analysis data for a related structure see [6]). The experimental results show that the best stabilization of the conjugated system in ketones I-V occurs in enaminoketones **Ia**, **b**, the worst one at X = Cl, alkyl (compounds IV, V). In compounds with X = O, S(II, III) the stabilization degree is of intermediate level. Some of new cyclopentenones described in this article we use in the synthesis of analogs of "sea prostanoids" and "9-LO-prostanoids" [1, 7].

EXPERIMENTAL

IR spectra were recorded on UR-20 instrument from thin film. ¹H and ¹³C NMR spectra were registered on spectrometer Bruker AM-300 in CDCl₃, internal reference TMS. Cyclopentenones **III** and **Ib** used in the study were prepared by treating dichlorocyclopentenone **IV** with EtSH and Et₂NH respectively according to procedure [4].

3-Dimethylamino-2-chloro-4,4-ethylenedioxycyclopent-2-en-1-one (Ia). IR spectrum (v, cm⁻¹): 1600, 1705, 3120. ¹H NMR spectrum (δ , ppm): 2.47 s (2H, C⁵H₂), 3.20 s (6H, 2CH₃), 3.94– 4.50 m (4H, 2CH₂O). ¹³C NMR spectrum (δ _C, ppm): 41.52 (CH₃), 45.76 (C⁵), 64.02 (2CH₂O), 104.78 (C²), 109.16 (C⁴), 159.65 (C³), 189.57 (C=O).

3-Diethylamino-2-chloro-4,4-ethylenedioxycyclo-pent-2-en-1-one (Ib). IR spectrum (v, cm⁻¹): 1595, 1700. ¹H NMR spectrum (δ , ppm): 1.15 t (6H, 2CH₃, *J* 7.0 Hz), 2.46 s (2H, C⁵H₂), 3.50 q (4H, 2CH₂, *J* 7.0 Hz), 3.94–4.08 m (4H, 2CH₂O). ¹³C NMR spectrum ($\delta_{\rm C}$, ppm): 14.19 (2CH₃), 44.95 (CH₂), 45.76 (C⁵), 63.70 (2CH₂O), 103.52 (C²), 109.31 (C⁴), 158.61 (C³), 189.60 (C=O). **2-Chloro-4,4-ethylenedioxy-3-ethylthiocyclopent-2-en-1-one (III).** mp 77–78°C, yield 63%.IR spectrum (v, cm⁻¹): 1570, 1720. ¹H NMR spectrum (δ , ppm): 1.33 t (3H, CH₃, *J* 7.1 Hz), 2.70 s (2H, C⁵H₂), 3.40 m (2H, SCH₂), 4.00–4.20 m (4H, 2CH₂O). ¹³C NMR spectrum (δ _C, ppm): 14.97 (CH₃), 25.16 (SCH₂), 65.77 (2CH₂O), 110.51 (C⁴), 130.99 (C²), 164.73 (C³), 191.94 (C=O).

General procedure of hydrodechlorination. To a solution of 2 mmol of ketone in 20 ml of MeOH was added 2 g of Zn and 0.5 g of NH_4Cl , and a mixture was stirred at reflux for 1 h. The reaction mixture was cooled and evaporated. The residue was dissolved in 10 ml of H_2O , the reaction products were extracted into dichloromethane (30 ml), the combined extracts were dried with MgSO₄, filtered, and evaporated. The products were purified on SiO₂ (eluent pentane– ethyl acetate, 1:1).

3-Methoxy-4,4-ethylenedioxycyclopent-2-en-1one (VI). Oily substance, yield 76%. IR spectrum (v, cm⁻¹): 1690, 1720. ¹H NMR spectrum (δ , ppm): 2.67 s (2H, C⁵H₂), 3.95– 4.20 m (4H, 2CH₂O), 3.33 s (3H, OMe), 7.27 s (1H, HC=). ¹³C NMR spectrum ($\delta_{\rm C}$, ppm): 44.83 (C⁵), 59.63 (OMe), 66.18 (2CH₂O), 107.45 (C⁴), 128.11 (C⁷), 173.27 (C⁶), 192.58 (C=O).

3-(2-Hydroxyethyloxy)-4-ethylthiocyclo-pent-2en-1-one (**VII**). Oily substance, yield 63%. IR spectrum (v, cm⁻¹): 1660, 1720, 3120, 3400. ¹H NMR spectrum (δ , ppm): 1.22 t (3H, CH₃, J 7.3 Hz), 2.38 d.d (1H, C⁵H, J 2.3, 18.5 Hz), 2.62 q (2H, CH₂, J 7.3 Hz), 2.921 d.d (1H, C⁵H, J 7.4, 18.5 Hz), 3.35–3.65 br.m (1H, OH), 3.85–4.17 m (5H, 2CH₂O, C⁴H). ¹³C NMR spectrum (δ _C, ppm): 14.46 (CH₃), 42.06 (C⁵), 43.02 (C⁴), 60.14 (C²⁺), 73.69 (C¹⁺), 105.45 (C²), 188.55 (C³), 202.87 (C=O).

2-Chloro-4,4-ethylenedioxycyclopent-2-en-1-one (**VIII**). Oily substance, yield 76%. IR spectrum (v, cm⁻¹): 1600, 1740. ¹H NMR spectrum (δ , ppm): 2.73 s (2H, C⁵H₂), 4.01 s (4H, 2CH₂O), 3.33 s (3H, OMe), 7.15 s (1H, HC=). ¹³C NMR spectrum (δ_C , ppm): 45.17 (C⁵), 65.37 (2CH₂O), 108.73 (C⁴), 138.10 (C²), 149.98 (C³), 195.78 (C=O).

4-(2-Hydroxyethyloxy)-4-methoxy-3-octyl-cyclopent-2-en-1-one (IX). Oily substance, yield 43%. IR spectrum (v, cm⁻¹): 1640, 1730, 3030, 3600. ¹H NMR spectrum (δ , ppm): 0.80 t (3H, CH₃, *J* 7 Hz), 1.1–1.6 m (10H, 5CH₂), 2.25–2.45 m (2H, C¹H), 2.57 s (2H, C⁵H), 2.65–2.80 br.m (1H, OH), 3.23 s (3H, OMe), 3.45–3.75 m (4H, 2CH₂O), 5.95 s (1H, HC=). ¹³C NMR spectrum (δ , ppm): 13.99 (C^8), 22.54 (C^7), 26.79 (C^1), 27.42 (C^2), 29.09 (C^5), 29.24 (C^4), 29.35 (C^3), 31.72 (C^6), 43.33 (C^5), 51.25 (OMe), 61.67 (CH₂O), 65.54 (CH₂O), 107.04 (C^4), 130.76 (C^3), 177.0 (C^2), 202.55 (C^1).

REFERENCES

- Akhmetvaleev, P.P., Baibulatova, G.M., Imaeva, L.R., and Miftakhov, M.C., *Zh. Org. Khim.*, 2000, vol. 36, p. 432.
- Akhmetvaleev, P.P., Imaeva, L.R., and Miftakhov, M.C., *Zh. Org. Khim.*, 1997, vol. 33, no. 9, pp. 1342–1344.
- 3. Akhmetvaleev, P.P., Imaeva, L.R., Belogaeva, T.A.,

and Miftakhov, M.C., *Izv. Akad. Nauk, Ser. Khim.*, 1997, no. 9, pp. 1699–1701.

- Akhmetvaleev, P.P., Ivanova, N.A., Imaeva, L.R., Belogaeva, T.A., Shainurova A.M., and Miftakhov M.C., *Izv. Akad. Nauk, Ser. Khim.*, 1997, no. 11, pp. 1990–1994.
- Akhmetvaleev, P.P., Imaeva, L.R., Belogaeva, T.A., Baikova, I.P., and Miftakhov, M.C., *Zh. Org. Khim.*, 1999, vol. 35, no. 2, pp. 257–259.
- Chertanova, L.I., Akbutina, F.A., Torosyan, C.A., Khalilov, L.M., and Miftakhov, M.C., *Izv. Akad. Nauk, Ser. Khim.*, 1997, no. 11, pp. 1979–1981.
- Miftakhov, M.C., Khalikov, P.M., Akhmetvaleev, P.P., and Tolstikov, G.A., *Zh. Org. Khim.*, 1995, vol. 31, no. 2, pp. 207–213.